Chapter 28: Alternating-Current Circuits Tuesday November $8^{\text {th }}$

Mini-exam 5 next Thursday (AC circuits and EM waves)
-Review of Mini Exam 4
-Review of LRC circuits

- Voltage/phase relations
- Impedance
- Resonance
- Power in LRC circuits
- Example problem
- Transformers
- Maxwell's equations (Ch. 29 - if time)

Reading: up to page 515 in the text book (Ch. 28/29)

AC Circuits and R, L and C : a Summary

Table 28.1 Amplitude and Phase Relations in Circuit Elements

Circuit Element Peak Current versus Voltage Phase Relation

Resistor

$$
I_{\mathrm{p}}=\frac{V_{\mathrm{p}}}{R} \quad V \text { and } I \text { in phase }
$$

Capacitor

Inductor

$$
\begin{array}{ll}
I_{\mathrm{p}}=\frac{V_{\mathrm{p}}}{X_{C}}=\frac{V_{\mathrm{p}}}{1 / \omega C} & I \text { leads } V \text { by } 90^{\circ} \\
I_{\mathrm{p}}=\frac{V_{\mathrm{p}}}{X_{L}}=\frac{V_{\mathrm{p}}}{\omega L} & V \text { leads } I \text { by } 90^{\circ}
\end{array}
$$

$$
\text { Capacitive reactance: } X_{C}=1 / \omega C \quad \text { (units }-\Omega \text {) }
$$

Inductive reactance: $X_{L}=\omega L \quad($ units $-\Omega)$

Phasor Diagrams: Adding the Voltages

$$
V_{\mathrm{p}}=\sqrt{I_{\mathrm{p}} R^{2}+\left(I_{\mathrm{p}} X_{L}-I_{\mathrm{p}} X_{C}\right)^{2}}
$$

Modified Ohm's law:

$$
\Rightarrow I_{\mathrm{p}}=\frac{V_{\mathrm{p}}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}=\frac{V_{\mathrm{p}}}{Z}
$$

Impedance: $\quad Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$
$\left[\begin{array}{l}\text { Units: } \\ \text { ohms }\end{array}\right]$
Phase:

$$
\tan \phi=\frac{X_{L}-X_{C}}{R}=\frac{\omega L-1 / \omega C}{R}
$$

At resonance, $Z=R$, and $\phi=0$ (just like a DC circuit)

Power delivered to the circuit:

$$
\langle P\rangle=\frac{1}{2} I_{\mathrm{p}} V_{\mathrm{p}} \cos \phi=I_{r m s} V_{r m s} \cos \phi
$$

Transformers

Primary Secondary

- Flux the same on both sides, but number of turns, N, is different
- Total flux through primary and secondary coils depends on N_{1} and N_{2}

$$
V_{1}=N_{1} \Phi ; \quad V_{2}=N_{2} \Phi ; \quad \Rightarrow \frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}}
$$

Transformers

Primary Secondary

- Energy must be conserved, so 'power in' must equal 'power out'
- Therefor, $I_{1} V_{1}=I_{2} V_{2}$

$$
\Rightarrow \frac{V_{2}}{V_{1}}=\frac{I_{1}}{I_{2}}=\frac{N_{2}}{N_{1}}
$$

