Chapter 28: Alternating-Current Circuits Tuesday November 8th

Mini-exam 5 next Thursday (AC circuits and EM waves)

- Review of Mini Exam 4
- •Review of LRC circuits
 - ·Voltage/phase relations
 - Impedance
 - •Resonance
 - •Power in LRC circuits
- •Example problem
- Transformers
- •Maxwell's equations (Ch. 29 if time)

Reading: up to page 515 in the text book (Ch. 28/29)

AC Circuits and R, L and C: a Summary

 Table 28.1
 Amplitude and Phase Relations in Circuit Elements

Circuit Element	Peak Current versus Voltage	Phase Relation
Resistor	$I_{\rm p} = rac{V_{ m p}}{R}$	V and I in phase
Capacitor	$I_{\rm p} = \frac{V_{\rm p}}{X_C} = \frac{V_{\rm p}}{1/\omega C}$	<i>I</i> leads <i>V</i> by 90°
Inductor	$I_{\rm p} = \frac{V_{\rm p}}{X_L} = \frac{V_{\rm p}}{\omega L}$	V leads I by 90°
Capacitive reactance: $X_{_C} = 1 / \omega C$ (units - Ω)		
Inductive re	eactance: $X_{L} = \omega L$ (ur	nits – Ω)

Phasor Diagrams: Adding the Voltages

$$V_{\rm p} = \sqrt{I_{\rm p}R^2 + \left(I_{\rm p}X_{\rm L} - I_{\rm p}X_{\rm C}\right)^2}$$

Modified Ohm's law:

$$\Rightarrow I_{\rm p} = \frac{V_{\rm p}}{\sqrt{R^2 + \left(X_L - X_C\right)^2}} = \frac{V_{\rm p}}{Z}$$

Impedance:
$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
 [Units:
ohms]

Phase:
$$\tan \phi = \frac{X_L - X_C}{R} = \frac{\omega L - 1 / \omega C}{R}$$

At resonance, Z = R, and $\phi = 0$ (just like a DC circuit)

Power delivered to the circuit:

$$\langle P \rangle = \frac{1}{2} I_{\rm p} V_{\rm p} \cos \phi = I_{rms} V_{rms} \cos \phi$$

Transformers Primary Secondary Soft iron

- Flux the same on both sides, but number of turns, N, is different
- Total flux through primary and secondary coils depends on N_1 and N_2

$$V_1 = N_1 \Phi; \qquad V_2 = N_2 \Phi; \qquad \Rightarrow \frac{V_2}{V_1} = \frac{N_2}{N_1}$$

T 7

Transformers

- Energy must be conserved, so 'power in' must equal 'power out'
- Therefor, $I_1 V_1 = I_2 V_2$

$$\Rightarrow \frac{V_2}{V_1} = \frac{I_1}{I_2} = \frac{N_2}{N_1}$$